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NOMENCLATURE

a, a , azo a 4 , b = constants

A = a, cos 0 +a? sin

A = atmospheric force

c - exhaust velocity

C =constant of integration

CD = drag ceffic.-A

CD = zero-lift drag coefficient
D

0

C = lift coefficient
CL

CL = slope of the lift curve

D =drag

E* maximum lift-to-drag ratio

g, g = acceleration of the gravity (vector)

G V term independent of p and T (Eq. II. 13)

H = hamiltonian
J =performance index

k induced-drag coefficient

K switching function

L lift

m mass of the rocket

M = mach number

= adjoint variables

"= P adjoint vectors (or variable)

N-.
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P - power of the propulsion systemn

r - position vector of the point mass

R = reerence length

s = arc length

S = reference area

t = non-dimensional time

ti = real time

T, T = thrust vector, magnitude

u - dimensionaless velocity

V velocity

w dimensionless weight

W - weight of the zocket

x = dimensionless longitudinal range

X = longitudinal range

y = dimensionless lateral range

Y = lateral range

= angle of attack

= heading angle

= lift control

kM - maximum lift control

A = U U4_ W A

S7 aerodynamic parameter

p - air mass density

P - air mass density at reference level

r •-bank angle

ix



= dimensionless thrust

TM = maximum dimensionless thrust

I= gravitational constant

gx
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I. INTRODUCTION

This report presents the results of a study to evaluate thrust magni-

tude control (TMC) in Air Force missions. In this study, modern control

theory was applied to determine the ime history of the thrust profile to

achieve optimal maneuvers of aerospace lifting vehicles.

This report consists of five parts. After an introduction, 'we give a

general discussion of optimal thrust magnitude control in Chapter II. A

mathematical model for a very general propulsion system, the system (S),

Swas formulated. From this system we deduce the most commonly used

system, the system (S1 ), where the exhaust velocity of the gas ejected

"from the engine is constant. Optimal control laws for the thrust direction,

and the thrust magnitude are obtained. It is shown that coast, boost, and

sustaining thrust all may be optimal. In the singular case of sustaining

flight it is shown that:

1. Along the sustaining flight path, 'the position vector r, the velocity

vector V and the mass m of the rocket vehicle must satisfy a certain rela-

tion obtained explicitly.

2. The variable thrust magnitude depends strongly on the aerody-

namic characteristics of the vehicle, and the optimal trajectory flown.

The results in this chapter were obtained for a Newtonian gravitation-

al force field. In the remaining part of the report we consider in detail the

particular case of turning flight in a horizontal plane, in a uniform gravi-

tational field.

In Chapter III we present an analytical approach to the solution for

minimum time, lateral turns in a horizontal plane of a lifting missile. To

simplify the problem, it is assumed that t'.e thrust direction is always

aligned with the velocity vector. The lift and the bank controls and the

thrusting program for the three types of optimal arcs involved are ex-

pressed in terms of the state variables and a set of constants of integration.

Hence, the variational problem is resolved ultimately to a multi-point
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boundary-value problem. For the case of rectilinear flight, and for the

case of turning flight with the final position being free, it is shown that

"the variable thrust magnitude is given by (see Table of Nomenclature for

the notation)

T = f(X~a)(1)
4~PScZCD C

where f is a known function of V/c and a constant of integration "a". Fur-

thermore, the function f is insensitive to "a". Hence this formula displays

explicitly the variation of T in terms of the flight velocity, or equivalently,

as a function of Mach number. We notice that T is proportional to the zero

lift drag coefficient CD0 and the atmospheric mass density p. Hence, the

variable thrust magnitude for sustaining flight is an exponential function of

the altitude. This formula gives a complete criterion !o..r the programming

of the variable thrust profile.

Chapter IV gives the numerical results of the same problem. In this
chapter a discussion of the computer program used to compute solutions to

fully constrained problems is presented along with simulation results for

representative cases. While in Chapter III, to ease the analytical discus-

sion, it is assumed that the aerodynamic characteristics CD0 and k in the

parabolic drag polar representation

CD CD (M) + k(M)C? (1.2)

were independent of the Mach number, the numerical program discussed in

Chapter IV has provision for inclusion of these variations.

In the concluding chapter, Chapter V, we discuss the five types of

rocket motors used in Air Force missions in order of increasing thrust

controllability. A qualitative analysis was carried out for some typical

missions. The numerical simulations indicate that the percentage perform-

ance gain with throttling increases with the difficulty of the mission (espe-

cially position "arget missions).

- --- -- --- - - -€~- - . - - ~ - -



IH. OPTIMAL THRUST MAGNITUDE CONTROL

Optimal thrust magnitude control for flight in a vacuum has been dis-

cussed by Leitmann (Ref. 1) and Marec (Ref. 2). For flight inside an attmo-

sphere, partial results mainly concerning a rocket engine with constant

exhaust velocity mounted rigidly fixed to the vehicle flying in a fiat earth

model have been obtained by several authors (e. g., Bryson and Lele (Ref.

3)).

In this chapter we extend the results of Marec concerning a general

propulsion system to the case of flight in a general force field and in a re-

sisting medium.
u II. 1 The Propulsion Systems

Let T be the thrust developed by the engine. It is assumed that the

direction of the thrust can be taken arbitrarily. It will be shown that in this

case the optimal thrust direction is parallel to the vector p associated toPV .the velocity vector. The two remaining control parameters are the thrust
dm.

magnitude T and the mass flow P .

Let us define a general propulsion system (S) in the (r. A) space (Fig.

H. 1). Let c be the exhaust velocity of the gas ejected from the engine.
The thrust magnitude is then

T = Pc

The power of the propulsion system is

P th rus)cz Tc Tz (11.1)

The power being limited by

max5 (11.3)SP < max

the control domain in the (T, P) space is bounded by the parabola OABC

given by the equation

Tz ZP P(11.4)max

In the general system, system (S), we assume that the exhaust velocity is

3
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bounded by
c : c< :5 (11. 5)

rmin max

This further restricts the contral domain in the (T, •) space. In general

the mass flow is bounded by

P 5-- Pmax (1.I6)

and the resulting control space is shown in Fig, H. 1.

We notice that the thrust magnitude is bounded (Fig. 11. 1)

T T5T min(TB, Tc) (II.7)

From the general propulsion system (S) we have the fol!owing special cases:

If the exhaust velocity is constant, c min = cmax c, we have the sub-

system (SI) (Fig. 11. 2). In this system, the only control parameter left be-

sides the thrust direction is either the mass flow P, or the thrust magnitude

T. The thrust is bounded by

max

For an ideal electric propulsion system, the subsystem (Sz) (Fig. 11.3),

we have
=oo 0 Pa =CO (il. 9)

Cmin O max max

The control space is bounded by the limitation of the power only.

In the following, we shall examine the thrust magnitude control of

t these models with a detailed analysis of the system (S1 ), namely a rocket

engine with constant exhaust'velocity.

1. 2 Optimal Thrust Magnitude Control

The motion of a vehicle, considered as a mass point, flying in a gen-

eral gravitational field and subject to aerodynamic and thrusting forces, is

governed by the equations

dt

I24
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dt 1 (T +A) + g(rt) (H. m0,7t in

dm. T
dt C

Using the maximum principle, for a minimizing problem, we form the

Hamiltonian

Vr 4 v "p m (T + A)I. ll

where rp and pm are the adjoints to" , V and m.r Pv

For optimal thrust control, we maximize H with respect to T. Con-

sider the vector ,called the primer vector. For the direction ofT,
PV-. -*

maximizing H is equivalent to selecting T such that the dot product pv " T,

is maximized. Hence we have the generalization of Lawden's law for flight

in a vacuum, namely that the direction of T should be orientated along the

vector Pv and

max(pv T) pvT (11.12)v v

where pv is the magnitude of T. Using this condition and upon replacing c

by Tip we rewrite the Hamiltonian (I. 11)

H = -pP + -T + G (11.13)

where G is independent of the control elements P and T.

We shall consider successively the maximization of H in the control

space (T, P) for the different propulsion systems (S), (SI) and (Sz).

11. 2.1 Optimal Thrust Magnitude Control Using the System ()

At each instant t, the equation H = constant is the equation of a straight
mpm

line in the plane (T, P) (Fig. II. 4). The slope of this straight line is

The operating point in the (T, •) space depends on the value of this slope.

When = 0
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=-0-G (11. 14)

Since m/pv is positive, to maximize H we select the operating point p in

the bounded domain (TP) representing the system (S) such that T_° is

maximum possible. Hence we have the following cases.
nip

1. if-m > c we should select the point O. T 0 (coasting
Pf max

flight).

mpmS2. = c the operating point can oe anywhere in the seg-
Pf max

ment OA. We have T variable, with c = cmax. We have the

case of sustaining flight. (Singular case)
cma mPm c

max < cMex is the slope of
3. If c bynoticing that -- e
3.I 2 = p max 2

the tangent to the parabola AB at the point A, we deduce that the

maximum of H is obtained by using the point A. The thrust mag-

nitude is constant (Boosting flight at constant thrust)

2P
A cmax (If.15)T=TA c

max

The corresponding mass flow is
2P

max
czmax

C C nip c
4 B c m max

Pv

arc AB (or AC) of the parabola (11.4). The thrust magnitude is

variable and is given by
P pS• : max v

aTxv (11.17)
mPM

Hence it is determined by the ratio Pv/mp . The correspondingv m
mass flow is

- Ltp
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SCB
5 p--- <-m-(), the operating point is at the point B (or

C). The thrust magnitude is at the maximum constant thrust

(Boosting flight at maximum thrust).

Hence for a system CE) we have five types of optimal arcs.

1. T = 0 (Coasting Arc)

2. T = variable at low level (Sustaining Arc at low thrust)

3. T = constant at low level (Boosting Arc at constant thrust)

4. T = variable at high level (Sustaining Arc at high thrust)

5. T = Tmax (Boosting Arc at maximum thrust)

Besides the singular case (case 2) which cannot be treated by first order

theory, the thrust magnitude control is governed by the quantity m/pm/Pv

IL .2.2 Optimal Thrust Magnitude Control Using the System (S?)

The optimal thrust magnitude control for the system (S2 ) can be

easily deduced from the results concerning the more general system (S).

The operating point is always on the parabola given by Eq. (11. 4). Hence

the thrust magnitude can be taken as the control available, the engine being

operated at maximum power for any mass flow. The optimal thrust mag-

nitude is given by

T P= Ip (11.19)
mpm max

Hence it is a function of the quantity p v/mpm

11. 2. 3 Optimal Thrust Magnitude Control Using the System (SI)

Finally, let us consider the propulsion system represented by the

model (SI). The exhaust velocity being constant, the thrust magnitude can

be used as the unique control. Using the same geometric approach as for

the system (S) we can easily show the three types of optimal arc

1.1I -m > c, we take T 0 (coasting arc)Pv

le
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mp
2. If - c, we take T variable (sustaining arc). This case is

Pv
the singular case and the thrust magnitude cannot be decided by the

first order theory.

3. If f < c, we take T T (boosting arc).
Pv max

Analytically, using the optimal law (II. 12) for the thrust direction, we re-

write (II. 11) for this case where c = constant.

-r "-.4 T mPIH = • V+ Pv "*g + m (pv A) +(P -- ) (11.20)r In m m C CI
We define the switching function

p mm

K V (11.21)

Then, to maximize H with respect to T:

if K<0, we selectT =0

if K -0, we select T = variable

if K>0, we selectTT mT
max"

We notice that, if the gravitational field is time invariant, the Hamiltonian

H is a constant of the motion.

To derive the expression for the variable thrust magnitude control,

we notice that in this case K = 0, and we have the relation

mPm (1.22)

At this point, it is necessary to make assumptions concerning the atmo-

spheric force A and the acceleration of the gravitational field g.

We assume that

A 4psva (11.23)

where p is the atmospheric mass density

-k(r-R)poe (11.24)P P e(I. -i)]ii
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where R is a reference length, usually taken as the radius of the planet and

X is the height scale constant. We shall consider a Newtonian gravitational

field

With these assumptions we have the equations for the adjoints

dr 3rPV "--* -A)'I~d -(rOPV r ~ u V r
dp Pr" mVz V (11.26)

dp 1d"•=mmm(pv A) + p--, pT
dt m v In v

Now, along a sustaining arc, the equation (11. 22) is identically satisfied for

a finite time interval. Hence we can take its derivative to have

d Pm dm T mPM
( pm dm+) + &

dt c dt c dt mc v mcv c

Using (11. 22) we have

dp 1
- ic(P *A)F mc v

On the other hand

dpv d (pr A) (Pv V)

Pv dt Pv dtF Pr * Pv

By eliminating dPv/dt between the last two equations, we have another re-

lation for sustaining flight

r Vv" A) 2Cipv"V

-P (11.29)

Using the Hamiltonian (11. 20) along a sustaining arc we can give this rela-

tion another form independent of the aerodynamic force
,. Zcv .V)

- ""v (11.3 0 )
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If the adjoints I r and "Pv can be found, this equation gives the relationship

among the state variables r, v and m along a sustaining arc. Special cases

of this relation, mainly for flat earth model and horizontal flight have been

obtained by various authors (e.g., Ref. 3).

We also notice that, if the aerodynamic force is vanishingly small,

then from (11.29)

Pr "Pv =0 I31

We have the classical result for orbital transfer in a vacuum, namely along

a sustaining arc where the thrust magnitude is variable, the two adjoint

vectors Pr and Pv are orthogonal.

The thrust magnitude along a su3taining arc is obtained by taking the
derivative of the singular relation (11. 30). After some algebraic manipula-

tion we have
(p. *A 2(. *pV)1

(pvA) 4Hc + A Zc + cv 4c (p, V (. V)

In '' mc +'r+ r mVr r
I- .r -F!

(11.32)

We see that if rV" A) t 0, the variable thrust magnitude can be obtained

from this relation. Some special cases of this equation, giving T explicitly

in terms of the dimensionless velocity V/c will be presented in the next

chapter.

~~1
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Fig. II. 1 Propulsion System (S)

Fig III rplio ytm(

(c constant)

* Aj



Fg IL 3 Prplso Sytm

ýII

Fig.H. OFig.l Th3roulstMgioneCnto o System (S))



II. ANALYTICAL SOLUTIONS

In this chapter we present an analytical approach to thl-_ solution for -

minimum time, lateral turns in a horizontal plane of a lifting missile. The

lift and the bank controls and the thrustng program for the three types of

optimal ares involved will be expressed in terms of the state variables and

a set of constants of integration. Hence, the variational problem is resolved
ultimately to a multi-point boundary-value problem.

Simple cases where certain end-conditions are relaxed can be solved

analytically. Furthermore, in these cases, the variable thrust profiles are

obtained expli-itly, thas allowing constructive suggestions for the design of

TMC rockets.

I1. 1. Equations of Flight in a Horizontal Plane

Tbe equations of motion for a coordinated turn in a horizontal plane,

with the thrust always aligned with the velocity, are (Fig. I11 1)

dX! ,,• "-v coas3

dY
- = -Vsinp

dV = - DI...

L sino-
dtt m

dm Tdt' --

The notation is given in the nomenclature section. Note that we use t' to

designate the real time. For the flight to stay in the horizontal plane, we

have the constraining relation

L cos - = mg (II. 2)

The drag polar used is a parabolic drag polar

C C + kCz (111.3)D1 Do L

13
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In order to obtain an analytical solution, we shall assume that the zero-lift

drag coefficient C and the induced drag factor k are independent of the

Mach number end the Reynolds number. This is especially true for flight

in the hypervelocity regime. Aerodynamic configurations and flight rt-gimes

where these coefficients depend on the Mach number will be considered in

the next chapter where a complete numerical solution for a specified type of

missile wilU be presented. We shall use the usual assumption for the lift

and drag forces of the form

L = "pSC V?
(111.4)

D = -. PSC V2
D

To obtain general optimal laws for a general type of missile we intro-

duce the nondimensional quantities

c c c

W ipScz sZCDo Do

If the angle-of-attack, or equivalently the lift coefficient CL, is not con-

strained, a natural choice for the aerodynamic control would be the bank

angle a-. Then, the lift and the drag coefficients will be obtained from (11. 2)

and (I11. 3). In the practical case where the lift coe~icient is bounded, the

corresponding bound on the bank angle is a function of the state variables

m and V through the relation (1I. 2). Hence, the lift coefficient will be a

better choice as control parameter .hi this case.
A

We define a lift control parameter k such that )z is the ratio of the

induced drag to the zero-lift drag.

kC2

2= L (111. 6)
TDo

Then we lave
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CL =4C--,)/k X, CD= C (1+ XZ) -•
c D o (m.7)

w r)•uI- wZ _" uw-
Cos •=,. tan- w

We notice that when X 1, the flight is effectuated at maximum lift-to-drag

ratio E*.

The independent controls are T and X. They are bounded in the space
0 T. T

(In. 8)

The state equations become, with the nondimensional variables,

dx- = u cos p

dt -usin
du- =lu sin1.
dt

dwu

dt- [-r - (I + Zu? ] (0ll. 9)

dt -w
dt uw

dw

dt
dt
dt

To write the variational equations for optimal trajectories, we introduce

the adjoint components p1 , (i = 0, .... 5), to form the Hamiltonian

po+ ~p cs p2)~~u si +4 )u -IT (P -WPS)H=p+ u(p~cosppsin)- (+w uw w

The pi. (i = 1,... , 5), are respectively paired with the first five equations
(l. 9) while Po is associated to the last equation. These adjoint variables

satisfy the equations
|0

i dt
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i°i
"dt

dph = 0dt

d =t -(plcosp+pzsinp)+ R- P4u4+Z)dtw w wu 2q-XTu-rw P!

1p4 = u(p, sin -Pz cosp) (31.11)S~dt

ap5 =2TN_ i Tl+Xz)u 2  X-u3

dt w+ w W

The solution to the problem is obtained by integrating the system of state

equations (111. 9), and adjoint equations (1M. 11) with the appropriate end-

conditions, whifle selecting T and X, subject to the constraints (III. 8), in

such a way that, at each instant, the Hamiltonian H given by (111. 10) is an

absolute maximum.

111. 2. Optimal Controls

The problem, as formulated, has a number of integrals of the motion.

First, H does not contain t explicitly. Since the final time is not specified

P. -constant 0 (III. 12)

we see that p0 = constant, and for minimum time problem

Po - 1 (111.13)

Also, from the adjoint equations

p, = a, = constant (111.4)

Pz =az = constant

Using these relations we write the equation for -)4

dt = alk d- a-A = -(a y- azx)

Upon integrating

p4 =aly-a 2 x+a 4  (1II.15)

where a4 is a constant. We notice that the constants obtained thus far are
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valid over the entire optimal trajectory

By inspection of the Hamiltonian, we define the switching function

K = p 3 -wpS (1I. 16)

Then, for the thrust magnitude control, to maximize H with respect to -r:

if
K > 0, we select T = T M (boosting phase)

K < 0, we select T = 0 (coasting phase) (111.17)

K = 0, for a finite time interval,

we select T = variable (sustaining phase)

For the lift control, considered as function of X, H reaches a maximum
either at

K = XM (111.18)

OH
or at an interior point given by F7 = 0. Explicitly, we have

W . Zu4 
- = (III. 19)

Hence, if the maximum lift coefficient is used, we have for the bank, the

maximum possible bank angle for horizontal flight

COS KU (111.20)

In the -ease where variable lift coefficient is used, the bank angle is given by

tan T - U 1 1 2 I

We shall refer to the interior lift and bank as the normal lift and normal

bank controls. The other optimal possibilities will be referred to as the

maximum lift and the maximum bank controls. We shall assume that there

are no wavering maneuvers, the heading being continuously increasing along

a turning flight, and hence a > 0. This in turn implies that p3 and p4 are

of the same sign.
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We shall analyze separately each of the three types of optim arcs

111-2-1 Coasting Arc

Let
A = (u11.22)

A acos + a2 sinp

Along a coasting arc, = 0, and we write the Hamiltonian

uAl=1+ �,(l+ .. Z)uz• P3  (A.23)
w uw

The lift control is either

xX or A =pu (111.24)M221n

We first consider the case where X = The equations of motion, with u

as the new independent variable are

w = constant

, dx w Cos
du ,(I+X•) u

w sinp
du i+Xh) u1(X (III. 25) ,

dw
dudt _ w .
du 11+ )u.?

The boundary conditions at the ends of the coasting arc are

t = to, u lU0, x xo, y = Yo. P = PO, W1 WO.6)

t tj, U U1, x =x1, y =yI, P = o w =WO

By integrating the last equation (111. 25) we have for the velocity

-W 1 (111.27)
'1Te+ci (ro -i a tito

The change in the velocity from the initial point is obtained by replacing



19

u and t by ul and t, in this equation.

The variation in the heading is given by

XMuO +Pw/Xuo w 4X u,'w

M M U

(Ill. u81.10

The change in heading is obtained by replacing p and u by Pi and ul in this

equation.

For the trajectory, it is simpler to use the arc length. By the trans-

formation

dx = cos P ds
(111.29)

dy sin Pds

we have

ds = 130)

Upon integrating

s-so log uo (111.31)
M

i, where s -so is the arc length travelled since the initial time.

Next we consider the case of normal lift control. By eliminating p3
between (HI. 23) and the second equation (I1. 24) we have

uA : 1 - _P4_A•_ (u' + wz)] (111)

ZuwA

The state equations along a coasting arc become

w = constant

dx wt? Ccosdu IMA + (0 + w&)]
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du = [wu + swn (111. 3 3)du ?[z+ (u4 +W
d• = uA

du 11[AF + (u4 + w2)]

dt wu2
du [M+ (u"+

Since p4 is given in terms of x and y by (111. 15), Eq. (111. 32) can be solved

for A in terms of the state variables x,y, u and p. Subsequently the first

three equations (111. 33) can be integrated numerically. By satisfying the

terminal conditions at the ends of the coasting arc one can deduce the values

of the constants a1 ,a 2 and a 4 and the three new constants of integrations bl,

b2 and b4 arising from the integration. The minimum time of flight is ob-

tained by integrating the last equation (111. 33).

Hence, for a pure coasting flight, when the final states x, y, u and P
are all constrained, the optimal flight is at variable angle of attack. On the
other hand, when these values are free, the flight is effected at maximum

angle of attack.

We notice that if the optimal trajectory also includes other types of

arcs, then the constants of integration a , az and a4 remain the same

throughout the entire trajectory, while the constants of integration bl, bz

and b4 are functions of the values of the state variables at the ends of the

coasting arc. Their determination will specify the switching point joining

a coasting arc and a thrusting arc.

111-2-2 Sustaining Arc

Along a sustaining arc, K 0, and we have

P, -wpS =0 (111.34)

Consequently, relation 111. 23) is also valid along this type of arc.

We first consider the case where this arc is flown with maximum lift.

Consider, in general



21

dwPI) L w -wpS) - 1 P3 + " P

Along a coasting arc, - = 0, and a sustaining arc, K 0, we have

d(wps =. _,+X 2)uO X2 u3

dt+ (111.35)dt w P -;+ A- P4 I.3)

On the other hand, frova the adjoint equations (111. 11)

ldt (111U wuzA P (11.36)

By taking the derivative of (111. 34) and using (111. 35) and (111. 36) we have

A = i1+XZ)u(u + ) XXu44(u+1)+w 2

AP wu=A P2 (111.37)

By eliminating p3 between (11. 23) and (III. 37), and putting X I ,Mf we have

a relation among the state variables along a sustaining arc flown at maxi-

mum lift

uwA[(U+ 2) - u(u+l)A] = (ay- azx+a 4)[AZ - w3 (u +2)] (11. 38)

Upon taking the derivative of this equation, using the state equations for

simplification we can express the variable thrust magnitude conirol in

terms of the state variables. Explicit expressions for the thrust profile in

some special cases of interest will be presented in the next section.

For the case where the sustaining arc is flown with variable lift co-

efficient, we use the second relation (111.24) to rewrite (111. 23) and (111. 37)

we have

uA - 1- - WP12tuwA 'P I~ 9

and

A = -u(1.40)2uwA u

The relation among the state variables along a sistaining arc using variable

lift is obtained by eliminating the lift control A between these two equations.

We have for the vari.,'.ble lift control

- *- -
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Az - (u +2)(u 4 - wZ) - u[u4 (u+l) - (u+3)wZ]A
u[l + (I- u)A]

or explicitly

X2 -1+ u[1-+ (1 - u)A I'll W2)A

On the other hand we have, by eliminating~z between'(1II.39) and (1II.40'

A- (U + 1)w ]A PA (111 1 uA {I.43) ,

From the equations ill. 4 1) and (111. 43) we have the relation among the state

variables along a sustaining arc, using variable lift control. A'

P42 tu - (u+l)w]Z2 u w2[l+ (1- u)A]{(u+Z)(u' - w2) -ulu4(u+l)-(u+3)w 2 ]A}

(111.44)

The variable thrust magnitude control will appear upon taking the derivative

of this equation.

111-2-3 Boosting Arc

An explicit formula for the normal lift along a boosting arc in terms of

the state variables only is not known analytically. For the case where the

boostang arc is flown with maximum lift coefficient, we have the equation

du 1 5
_;=- _w(1-au)

where a is a constant
1 + X~2

M)a = M(111. 46)

By integrating we have the relation between the mass and the velocity along

a boosting arc flown at maximum lift
1

a7_ ---_ (111.47)

where C is a constant. When rM c, a 0, we write b =1/24" and con-

sider
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!A

1+Fa u + + e ue a s b " o

(l-a-u)b =[Q(t+o )J-eaI ~ c

Hence, if impulsive thrust is permitted, we have, along an impulsive-thrust

a we U- C (an. 48)

111. 3. Solutions for some Special Cases

We have shown in the preceding section that for the general case, the

optimal controls can be expressed explicitly in terms of the state variables

and a certain number of constants of integration. In other words, the set of

adjoint equations, except for the case of maximum thrust with variable lift

coefficient, can be integrated completely. Thus the variational problem is

reduced to a multi-point boundary-value problem. Because of the non-

linearity of the state equations, the actual optimal trajectory can be obtained

only by using numerical integration.

In this section we shall relax some final conditions on the state variables

in order to get deeper into the problem analytically. In particular we are

able to obtain the thrust profile along a sustaining arc in these cases. This
result, coupled with the numerical investigation in the next chapter will

allow us to formulate constructive suggestions for the design of TMC rock-

ets.

111-3-1 Rectilinear Flight

This problem has been analyzed numerically in Ref.4, for a very

special type of rocket. In this section we shall give the general analytical

solution to the problem for a general type of lifting rocket.

For this case y =0, P =0,* = 0, and the lift coefficient is always

W w
-7 = (1=1.49)

The lift coefficient is no longer an independent control, and we should
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rewrite the two sets of state, and adjuint equations using the thrust magni-

tude as the unique control.

For the state equations we have
dx

dt

dtd w u (111.50)

dw

dt =
dt
dt

Using the same subscript order for the adjoint variables as associated with

the full set of state variables, we have for the Hamiltonian

11(WZ+ u 4)w+ l.( (III.51)H I-+ plu- PSz + +wT (pN -wpS)

The adjoint equations, in this case, are

dt

d. =PI + P3{u -wz 52

dt wu l

dt - W? uz P3

The switching function is always

K = p - wps (111.53)

As before, we have the integrals of motion

p, = a, (111.54)

and

H =0 (111.55)

This gives the relation

p -+au+ L-(p3 -Wp,) (11. 56)wul w



which, for the cases of coasting flight, and sustaining flight, is reduced to

wu

Next, we consider
d~p = T(3WN : - w 2

dt w wu .58)

For coastirg and for sustaining flight, we have

S- w(111.59)
dt wu 1.

We consider succesively the following three types of optimal arc.

Coasting Arc

We have, T = 0, and hence

w = constant (111.60)

The adjoint variable pN is obtained in terms of u from (111. 57). For ps , we

rewrite (III. 58)
q• =1 (U4 -W2)_ (ui- )(aju - 1)

dt w uz' P3 w (u% + z II 1

The equation for u, with T =0 is

du _•(U4 + w)(I.6)
dt wu-

Hence

dP =. (au - 1)(u' -w 2 ) (111.63)
da 71(US +w')6

Since w is constant, ps is obtained by quadrature and the system of adjoint

equations is completely integrable.

The velocity is obtained by integrating (111. 62) from the initial point

of the coasting arc. We have

t to) 1 ul - N"w.+w + 1___Arc tan 4 w u al . 64)

%r--4% '+%T- - 2Tw- -7 l 7Iuj
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-For the range, using u as variable, we have

dx wu 3

du q(u 4p +wz)

Upon integrating

- (x-xO) = log u4 + W (111,65)

Sustaining Arc

Along a sustaining arc, K = 0 and we have

S• 3 - wPs = 0 (111. 66)

"By taking the derivative of this equation, and using (111. 59) and the second

of the Eqs (111. 52) we have

q (U + z)(u'4 W2 )
ap (111. 67)

By eliminating pI between (I1. 57) and (111. 67) we have the relation between

the nondimensional weight and the nondimensional velocity along a sustain-

ing arc.

u[u4(u + I) - vw(u + 3)] 1
u + z)(u e - wz) a, (1.68)

In Fig. I11. Z, we have plotted the trajectories for sustaining flight, in the

(w, u) space, using a = I/a1 as parameter. Explicitly, we have the equation

of the curves with a < 0

w = uz + (1 - aiu -Za (111.69)

The family of curves is bounded by two limiting curves. When -a " o we

have the parabola

w = uz (Iii. 69a)

When a 0, we h-ave

u ++I (III. 69b)
This limiting curve corresponds wo the singular curve obtained in Ref. 5, for
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the problem of maximizing the range.

To have the thrust profile along a sustaining arc, we take the time

derivative of (111. 69) using the appropriate relations for du/dt and dw/dt.

Upon simplification we have

zuz[uz+ {z- a)u- 2a]

[u' + (3 - a)u- Za] (111.70)

[2u 4 +(9-4a)u3 +2(a2 -8a+3)u2 -2a(7-4a•i+8a 2 ]
[uL +z-a)u +(az - lZa+l£)u 3 +6(az 4a+l)u4 +Za(6a-7)u+8az]

In Fig. 1I. 3, we have plotted the thrust magnitude of sustaining flight as a func-

tion of the velocity, ",sing "a" as the parameter. The family of curves is

bounded by two limiting curves. When a co we have

4uZ (lII. 7 0a)

When a -0, we have

Zu? (u+ 2)(U2 9u + 6)

"(u+s3)(u3 +6u- +lZu+6)

From Fig.II.Z, it is seen that, along a sustaining arc, as w decreases,
the velocity decreases. From Fig. 111. 3, we see that the variable thrust is

also decreasing along a sustaining arc. The level of the thrust is high for

large velocity, and remains at lower level for small velocity. In particu-

lar, for the range of velocity studied in Ref.4, between M = 0.3 and M =

Z. 5, one easily verifies in our plot for the thrust profile that T remains

small and is slowly decreasing. It has been found numerically in Ref. 4

that the thrust magnitude along a sustaining arc is nearly constant and re-

mains small.

We notice that the exact solution for our thrust profile applies to a

general type of missile. By the definition (111. 5) of T, we see that the real

thrust is proportional to (pSc 2CD). Hence our formula (111.70) gives ex-

plicitly the variable thrust profile in terms of the altitude (through p), the

flight velocity V, and the missile characteristics S and CDo.
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Using the expression (111.70) for the variable thrust, we have the equa-

tion for the distance travelled along a sustaining arc

u
- 41l(x - xO u 2(u+ 2)ND+Zu(u2 +z 2a) du J11.7l)

-( )N"D [uz + (7-a)u-2a]

where
N = uz + (1-a)u-Za

D = u 2 + (3-a)u-2a (111.72)

It is known that the integral in Eq. (111.7 1) can be expressed in terms of

elliptic functions. The time is finally obtained from

2 u 2(+ )ND + u(uz + 2a) .d
-4iq(t-t 0 )= 5 - D [UZ + (2 - du (111.73)

U0

Hence, the equations along a sustaining arc are completely integrable.

Boosting Arc

Along a boosting arc, where r = rM, the variation in the nondimen-

sional weight is simply

w-w 0  -TrM(t- to) (1I1. 74)

In the (w, u) space, the trajectory for boosting arc is obtained by inte-

grating the equation

du 11 (w ++u")(
dw = L wMu (WH.7 5)

Althoug-h an •nalytical solution to this equation is not known, it is seen

that for TM -• •. the limiting curve is

Uwe =C (U:
where C is a constant of integration.

Optimal Trajectory"

The problem of minimum time between two given end points in the



29

(w, u, x) space is hence obtained by joining the different types of optimal arcs.

Let B -z Boosting arc, C = Coasting arc and S = Sustaining arc, Follow-

ing the same type of discussion as in Ref. 6, we see that there are six pos-

sible types of optinmal trajectory, namely (Fig.III. 4)

BC CB

SBSC and CSB

BSB CSC

Although the actual computation involves numerical solution, it is possible

to have the following general properties which facilitate the computation

(Fig. III. 5).

Proposition 1

Let X = (wu,x).

If X0 and X are both specified, then in general the optimal trajectory in-
0 f

volves all three types of arc.

Proposition 2

If wO > UO

the initial arc is a boosting arc

If Wo < Uo

the initial arc is a coasting arc.

Proposition 3

If w > u 2
f f

the finl arc is a coasting arc.

If wf< uz f+l

uf +3

the final arc is a boosting arc.

111-3-2 Turning Flight with Free End-point

As in the case for rectilinear flight, the turning flight problem re-

duces to a problem containing one single parameter if we do not specify the
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end position xf and yf.

In this case, from the general results obtained in Section 111-2 we

have

a, = 0, a, = 0 (111.77)

and hence A

p4 = a 4 = constant (1I. 78)

The controls involved are the lift (and hence the bank angle) and the thrust

magnitude. For the optimal lift, we have either

X =).(111.79)

M

or

4X Zud wZ = (HI. 80)

We shall consider the case of maximum lift and next, the case of variable

lift.

Maximum Lift Program

The lift is given by (111.79), andhence, we have for the bank angle

cos a, (I11. 8 1)

M

The optimal arc is of three types.

Coasting Arc

The general solution in section 111-2 is valid and we have the following

results starting from the initial point wo, u0, p0, so

na+'1 ) I 1

wo (t -to) u - - -

XMu -%M 0W0 M 0 - Moo
wu u

2•1+•I05° o)= Mlg MU +k•' ' w

-On .8 fl4f W
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Sustaining Arc

With A = 0, and X = XM equation (111. 38) giving the relation between

w and u along a sustaining arc becomes (a4 < 0)

X2 w"(u + 3)
M (111.83)

u(u + 2)wPZMU4 - w! a 4

Explicitly, in terms of u and of the parameter b = - l/a 4 , we have

A, 2[(U+3)7 + b~uZ(u + 2) 2 j
(111.84)

Fig. 111. 6 plots the family of sustaining trajectories in the ((w/XM), u) space,

using b as parameter. The curves are bounded by the limiting curves.

j For b-oo, wehave

W =x MUZ (III. 84a)

For b 0, we have

xM U
W w(Il(. 84b)

The variable thrust along a sustaining arc is obtained by taking the deriva-

tive of the singular equation (111. 83). We have, after simplification,

Tr = (1+X M)uZ[3(u+4)+2bZuZ(u+2)j[1Z(u+3)+bZuZ(u+Z)-bus1tu+2)[4 + b'u'(u+2ffT/

[z(u+3)(2uz+9u+12)+b 2 u2 (u+Z)(u+l10uz+24u+Z4)+b4 u4 (u+ 2)(u +Zu+) L
-bu[(u3 +6uZ+ 12u+l1)+bZuZ(u+Z)(uz+2u+Z)] 4(u+Z)[4+bzuz(u++Z) ] (111.85)

Fig. 111.7 plots the thrust profile -r/ (l+Xz) as function of the nondimension-

al velocity u, using b as parameter. The family of curves is bounded by

two limiting curves.

For b oo, we have

(-+X ) - + (I. 85a)

For b 0, weh rve

""- ~ 5a~ -
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Tr 3u2(u + 4) (III. 85b)
(I + xi) (~u+ 9u + 1)I

Once the thrust is known, the variation in the heading, and the time 'f flight

along a sustaining arc are obtained by quadratures. We observe that, along

a sustaining arc, both the velocity and the variable thrust level are decreas-

ing.

Boosting Arc

When X = XM0 the variation of the mass in terms of the velocity is

given by Eq. (111.47) written in. terms of the initial conditions at the start

of the boosting arc as
S1 1

"" 4l-a'u ) w0 4- ) , a -(1.M

The variation of w as function of time is simply

w - wo = -n1rM(t - to) (111.87)

From these we have u as function of t. For the change in the heading, we

write

du u[TM -((11÷ iul i1.88)

w2 is obtained from (111. 86) and subsequently we have 3 in terms of u by

quadrature.

Normal Lift Program

The variable lift is given by (H11. 80). The optimal arc using a variable

lift coefficient is of three types.

Coasting Arc

Since A 0, p4 = a4 we rewrite the Eqs. (111.22) - (111.24)
A = 4.zu4 w

+_ u- - a4&_0 (111.89),.IN, uw
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By eliminating p3 among the equations, we have the equation for A.

a4 Az - ZuwA - a4 (u4 + wz) = 0 (111.90)

Solving for this equation, we have explicitly for the lift coefficient

1 w+ +'U (111.91)ZwZ• ) u a-"-•w q-uzwz•.a•(u4+wz)(I.91
u -I+ 0

For the bank angle we have (a4 t 0)

tanr a-[u-
ta a [ 2 + a2 (1+ U4) (111.92)

a4  4 W

Since w is a constant along a coasting arc, we can plot, for different values

of w, the lift coefficient X, and the bank angle a, in terms of the flight ve-

locity u, using a4 as parameter. For a given missile, w can be taken as the
initial weight or the final weight. To have the plots valid for a general type

of missile, it is convenient to include the constant a4 in the variables. Let

, w = - (111.93)a4 a2

Then we have the equation for X.

-d = ++%'-U-4 T z) 77=7 (111.94)

with the condition

U4 X2 <C) (11.95F E'i -- ,. = •.M(II 95)

We can have a general plot for the lift coefficient, in terms of the velocity

using V as parameter.

Similarly, using Id and V we have for the bank angle along a coasting

arc using variable lift coefficient

tan •a ± (111.96)

Since 'W is constant, we see from this formula that when I d 0 a -* 45* and

when, U a-, a -" 90o. Since U is decreasing along a coasting arc, the bank

angle for normal lift is also decreasing. By Eq. (111. 81) we see that the
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bank angle is also decreasing along a coasting arc when maximum lift co- I
efficient is used. The analytical results obtained in this chapter are in

agreement with the results from an independent numerical analysis carried

out in Chapter IV.

Sustaining Arc

For a finite time interval of flight along a sustaining arc, we have

P3 - wPS = 0 (111. 97)

The lift coefficient is given by (111. 42) with A 0. We have

US1 + u" - w•) (n1. 98)

On the other hand, from Eq. 111. 44, by putting A 0, p4 a 4 , we have the

relation between the weight and the velocity along a sustaining arc using

variable lift
uw2 (Zu + 2) (u4 - w2v) 2 I.9)'

U3WZ(LIa 4u W a (111. 99)
[du - (u+l)w 4

Explicitly, using a az as parameter, we have

W LI 4".[ u (u +2) +za (u ÷ )] + u / 6u+Z)[zZ[(u ÷zi+3I+a (1110
SZ2[u•.1+2) + a~u+ 1)2]

Fig. 111. 8 plots the family of sustaining arc in the (w, u) space. The curves

are bounded by two limiting curves.

For a -. 0, we have the parabola

w = u (III. 1Oa)

For a -oo, we have the curve

uz
Sw (III. lOOb)

Using (111. 100) we can express the variable lift control in terms of u, and

the constant a as

X2 1+ uZu+2)+2a(u+l)" u 4(u+2)fuZ(U+Z)+4a] (11I.101)
[ut(u + 2) + a (u +)]
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For u -* 0, X - 3". For u - X •, - 1. Hence, we see that, when variable

lift is used along a sustaining arc

1 < X < 43J (in. lOz)

The family of lift curves is bounded by two limiting curves. When a -" 0,

Eq. (111. 101)becomes

!=1 (Ii. 101a)

When a co, we have the limiting curve

u + 3 (1I1. 101b)

For the bank angle, we have in general

tan (0 u - w 2 ) (I1. 1032)

Using (111. 98) we have

tanzc (u+Z) 0!, 1) (111.104)' U W"

Another expression for tana can be obtained by noticing that Eq. (IR. 90) is

also valid for sustaining flight, and that A = w tan a. Hence we can write

the equation for tana with a4 t 0

tan -u tan - - (1 + uj0 (1.105)

Combining the last two equations we have
u4

tan' - (u=+1) (111.106)

For a- to have positive value, we notice that a 4 < 0, when w > u?/,4"+T.

By eliminating w2 between the two equations (111. 104) and (III. 106) we have

the equation for tanoa.

tan a" - u(u+Z~tan-- (u+Z) = 0 (111.107)a4

Since a4 < 0, we take the positive root

tno i.4 [u(u+z)- (u+Z)[u'(u+Z)+4a4] 3 (1.108)

Fig. 111. 9 plots the variation of the bank angle along a sustaining arc

in terms of the nondimensional velocity, using a4 as parameter. II

I
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When u 0, tan % - "and a - 540441.

When u-,oo a-- 90* or 00 dependingon the sign of a 4 .

The family of curves is bounded by the limiting curve obtained when -a 4 "0.

We have

tan a- = 4u-+7 (Ill. 108a)

The variable thrust profile is obtained by taking the derivative of the Eq.

(III. 99), using the appropriate relations for da/dt and dw/dt. After some
algebraic manipulation, we have

2u[(u+l)D- N u3 [(Zu+5)N- D]+a(3u+4)[(u+l)N- Di

D U u j[(Zu +6u+ 5 )N- (u+l)FD]+a(2uZ+55u+4)[(u+l)N- D]

(111. 109)
where

N. = [u3 (u+2)+2a(u+l)]+uZJ(u+ 2)[uz(u+2)+4a]
(Ill.110)

D = 2[u:3(LI+Z) + a(u+ Il)Z

Fig. 111. 10 plots the variation of the variable dimensionless thrust -r in

terms of the dimensionless velocity u, using a as parameter. The family of

curves is bounded by two limiting curves.
When a -•04u

U + - (111. 10 9a)

When a oo

Zuz(u+2)2(u+4)T U + 1)(2U2 + Su + 4) (111. 109b)

i It is seen that T is increasing with u. Hence, since along a sustaining arc,

the velocity is decreasing, the variable thrust is decreasing along that arc.

Also we notice that along the sustaining arc, for small velocity the variable

thrust magnitude remains at relatively low level.

Boosting Arc

For variable lift control, no analytical solution can be found for

the boosting arc, but it is seen that in the (w, u) space the trajectory tends to

the exponential curve (111. 48) when T 00.

--- -- -- ~ -- -
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Optimal Trajectory

As for the case of rectilinear flight, the optimal trajectory is of
the six .types

BC CB
BSC and CSB

BSB CSC
The optimal trajectory is obtained by joining different types of subarcs such
that the end conditions are satisfied.

To facilitate the computational program, we may use the following
criteria (Fig. IIl. 11).

Proposition 1

When maximum lift is used

If wo > xMU:

The initial arc is a boosting arc.

xMUOIf Wo <-
Nluo + 3

the initial arc is a coasting arc.

When normal lift is used

If wO > u:

the initial arc is a boosting arc.
2

If. Wo <qu..TT

the initial arc is a coasting arc.

Proposition 2

When maximum lift is used

If Wf> xMU2
ML f

the final arc is a coasting arc.

if Mf< -
f

_ _______
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the final arc is a boosting arc.

When normal lift is used

If w uf 2u

the final arc is a coasting arc.

if wfa o i

the final arc is a boosting arc,
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y L

Fig. HL. 1 Flight in a .Horizontal Plane

a=- 00•

4 =-10

F a- I/a. -

2

Fig. 111. 2 Optimal Trajectories for Rectilinear Sustaining Flight

b-j
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Fig. HI.3 Variable Thrust Profile for Rectilinear Sustaining Flight

K w .w

~0 BC u o BSC u o BSB u
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CSB u CSB u o CSC UFIg. 111. 4 Optimal Trajectories for Rectilinear Flight
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Initial Boosting and
Final Coasting Arcs

Initial Coasting and
Final Boosting Arcs

0 2
Fig. 111. 5 Criteria for the Selection of the Initial and Final Arcs

b= 00

b--4/a 4  =1/2

0 2

Fig. TU. 6 Optimal Turn Trajectories for Sustaining Flight at
Maximum Lift
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I, b-O0

Fig. 1I1. 7 Variable Thrust Profile Along Sustaining Arc for TurninL-g
at Maximum Lift

a o

II

220 2u

Fig. 111. 8 V ptimal Turn Trajectories for Sustaiinng Flight withu

Variable Lift
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Initial Boosting and
Final Coasting Arcs

•2
Initial Coasting and
Final Boosting Arcs

2

Maximum Lift

4 -
Initial B~oosting and
Final Coasting Arcs /

,/

I-I
Initial Coasting and

V Final Boosting Arcs

01 2 U

Normal Lift
Fig. 111. 11 Criterip for the Selection of the Initial and FinL.l Arcs
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In this chapter a discussion of the computer program used to compute

solutions to fully constrained problems will be presented along with simula-

tion results for representative cases.

IV. 1. Basic Optimization Problem

The equations of motion for flight in a horizontal plane are given by

Eqs. (I1I.1) and (111.2). To facilitate the discussion of this section, the

state variables (i. e., xy, v, •, m) will be denoted by xl, *.., xn, where

n = 5 for this problem, and the controls r, a-, CL willbe denoted by ul, uz, u3, re-

spectively. The computer program is developed in the (x, uý-system.

The problems considered in this study are Mayer type optimal con-

trol problems, and the computer program was developed for the following

Mayer problem.

MINIMIZE: J -(tfx) (IV. 1)

SUBJECT TO: x= f(t,x;ui ,u 2 ,u 3 ) (IV.2) j

x (to) X0 (IV. 3)

0 5 u 5T (IV. 4)
max

U3 -CL (IV. 5)

G(x°u z ,,u3 ) =0 (IV. 6)

Equation (IV. 1) is the performance index which contains the quantity to be

optimized (e. g., tf for minimum time problems) and penalty terms !or the

terminal boundary conditions. Equations (IV. 2), (IV. 4) and (IV. 5), and

(IV. 6) correspond to Equations (Ill. 1), (111.3), and (111. 2), respectively.

The control equality constraint (IV. 6) can be used to eliminate either uz or

u3 from the problem. Since the main purpose of the program is to verify

and extend the results of Chapters II and III, CL is eliminated, i.e.,,

G(x,u2 ,) = 0 u u3 = g(xu 2 ", (IV.7)

or, in physical variables

45
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mg2mgSos pVZScosrm (IV. 8)

We now have the following problem: Minimize Eq. (IV. 1) subject to

x(to) = x0 and:
S--ft, Xu•, Uz) = f[t, x, ul, uz? x U(]IV. 9)

0O~u1 = T (IV.10)
max

g$,UZ max (V 1

IV. Z. Solution b, Gradient-Type Methods

The first step in the developm.ent of a function space gradient-type

method for optimal control problems is the definition of the following aug-

mented functional:

tf

J 'b(tf,xf) + Y" XT(t)[f(tx,u , ,u2 ) - k]dt (IV. Z)

to

where X (t) is a vector of influence functions which in the limit (of the numer-

ical algorithm) approaches the p(t)--vector of Chapter III.

It is convenient to define a Hamiltonian function

TH (t, x,X, U) s X f (t,X, U). (IV. 13)

Let u (o)t) 1 (u °(t), uz)(t)) be an estimated control vector which satisfies
Inequalities (IV. 10) and (IV. U .), and let t(o) be an estimate of the final time.

tf
One can then integrate Eqs. (IV. 9) forward to define a corresponding tra-

jectory x(°)(i), defined on [tt ()], and a value far the performance index,
J[u (0)1. 

t

Let X(0)(t) be an arbitrary continuous vector which we shall character-

ize later. To develop the gradient-class of numerical algorithms, expand
(0) v)Eq. (IV.12) to first-order about the pair (x (t),u It)) with the following deft-

"nitionG

u(4t) = u(o1t) + 6u(t) (IV.14)

St) + 6x(t) (IV.15)
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t) = +t i dtf. (IV. 16)

xM1)(t (0) = (1)t• + dxf (IV. 17)
X ft

Then,

j[u] = j(O)] + (o)dt + f dxf

+ [0(t)- ) )t

+ 1 !f (f f )]dtf40) T T
+ [o• 6x+H 611 -_ 0 6ox]dt (IV.18)

to

Upon integration by parts of the third term in the integrand and rearrange-

ment of terms, the following equation expresses the difference in cost be-

tween the base trajectory and the first iterate (to first-order):

(i)~(0 (o t+(0) (60)iTl' dxAJ[Su]= J[u(')] - J[u(°)]= '()+ H'°ot dtf + (OxX- 0)x

tf f
wh(er +05x + H(°)Tsu]dtu (IV.19)

to
where

6 xA(t)) dxf-:k(°) (t0)) dtf (IV. 20)

has been used to eliminate 6x(tVo)) from Eq. (IV.19).

We now characterize --(°(t) so that a stable iterative algorithm (i. e.,

AJ 0) is defined.

SPECIFY: .() = ( (IV.Zl)-xf

X(o)(t) = HIt x(O)(t), u(O)(t) X(o) (t)] (IV.ZZ)

Then,

fT
A ( 4(0) + H(oý dtf + CH(0) 6u dt, (IV. 23)

tf+f
t to

or,
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i . -

tfU
to

Note that if the following choices are made:

dt = t)- =- + °(- to)] (IV. 25)

6u ~ ~ ~ ~ " (t ut cH)t (subject to constraints)'I. (IV. Z6)

with E > 0 (small), then AJ - 0. These choices represent the gradient

method choices.

In the computer program developed here, the conjugate gradient

method [Refs 7,8] was employed. It can be shown that this method also

guarantees AJ - 0. We shall now present the algorithm in two parts; first,

the algorithm with no control inequality constraints will be listed, and sec-

ond, the modifications necessary to handle the control inequality constraints

will be listed

UNCONSTRAINED CONJUGATE GRADIENT ALGORITHM

1. ) Guess u(°)(t
-f

SZ~.) Compute: x I(t), x(I(t), H )(t

t Tf f(I)(1T() dt
) M u ud1

Tai~~~~~t •(I-) ,t)(. T
•fH Ii"H (Ildt

u U

to
i P(°)(t) H Hu°)(t

S. ecIf )T M St. If yes, stop. If no, go to 4)% 'to
4. ) Perform one-dimensional (l-D) search to determine the valuectI which

IIminimizes
d J [u () Ml IJu - ]. (IV. 28)
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5.) Define = - ,I) setI =I+ 1. Return to 2.)

Equation (IV. 27) defines the conjugate gradient search direction. Dis-

cussions of this method are given in Refs [7,8].

MODIFICATION FOR. 0 - ul < T• max

Let W(I be the set of points at which ul (t) is on the boundary, i. e.,
Let) - {tIu I(t) = 0 or T maxl (IV.29)

Replace the ul -part of the inner products in Eq. (IV. 27) by

H(I) H (I)dt (IV. 30)
"[ttQ - (I) u

i.e., in the evaluation of the inner product associated with H1i) (t) do not

include boundary subarcs.

The set ,+1) is formed during the 1-D search. The implementation

is as follows. Let ' be a candidate search parameter:

if u)(t) - 'pW > T m set '(I+l)(t) TmaI) ma (IV. 3 1)
if u () t) - "Vp ()< 0 ,set '(I+l) ()=O

After the function evaluations for the 1-D search are computed, a value (I

is obtained by a cubic interpolation process. The set W') is then defined

as the set of all t which cause the inequalities in Eq. (IV. 3 1) with a re-

placing "a.

MODIFICATION FOR g(x, uz) 5 CL

As noted in Chapter III the constraint on bank angle is a function of

state variables. Thus, this control constraint is treated in a manner

slightly different than the thrust, ul. Let W? be the set of points at which

g(x (t), u2 (tM) = C In the computer program the control vector is
Lmaxstored at each integration step, and linear interpolation is used to define

the control between the fixed step-lengths. As with wl) W2+I is deter-

mined in the 1-D search. However, in the forward integration for the



function evaluation for a specified search parameter, •', the control con-

straint relation is changing because x appears in g(x,uz) CLmax. Thus,

when the integrator is at t., the constraint at t. + At is predicted by

g[x(ti)+ic(t ) At, uZ (ti + At)] =CLmax (IV. 32)

If the integration stepsize is sufficiently small, this approximation is suf-

ficient to approximate the control constraint at t. + At. Except for this1

modification, the set W2 s1) determined in the same way that"W, is

determined.

IV. 3. Deck Description

The program is developed based on the conjugate-gradient algorithm.

A Runge-Kutta fourth order integration scheme is used to perform both for-

ward and backward integration. A switch is imposed such that it can be set

to the gradient algorithm.

The program is designed to minimize a weighted performance index

which includes the following effects.

1. Total flight time tf.

2. Terminal states xf.yfvf,pf and mf.

The performance index is

J = ctf+pl(x- xf) + Pz(Y -Yf)Z+ P3(V- Vf) 2 +P4(p - pf)2 +PS(m- mf)2

9 subroutines are used to handle this problem:
MAIN AE RODN

I _____ IV
FWDINT DEIIV1

COSTFN
I

XLAMFN

BAKINT DERIV Zi I
GRADFN AERODN

SEKALF

t --
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MAIN: Reads in all necessary data, initial and terminal values, controls

the application of the conjugate gradient algorithm, calls the forward and

backward integration routines, directs the one dimensional search, updates

the control vector and terminal time and prints out a message concerning the

results of the iteration and prints out the control profiles obtained by that
iteration.

A. J = An integer which indicates where the data is located.

B. Namelist input data

G = gravitational constant

RHO = atmospheric density

CDO = zero-lift drag coefficient (CD 0 )

CE = exhaust velocity

DK induced-drag coefficient (k)

AREA = aerodynamic reference area

DELTS = integration stepsize

CLA = slope of the lift curve (CL,)

ITMAX = limit on number of conjugate gradient iterations

ITMX = limit on steps in 1-D search

KOUNTM limit on iterations for weight cutoff

IKEY = number of iterations to reset the search direction

CSTR = estimate of final cost, initial guess of parameter a for one-

dimensional search

PFUN (5) =penalty coefficient vector

CCOST(1) = coefficient in cost functional

B = not used

I = Index for output device
=switch for scheme option 1 conjugate gradient method

JERK == 2 gradient method

DTFM = maximum allowable final time change

XDTFM = fraction of DTFM used to start 1-D search

XO = initial position in x- direction

YO = initial position in y-direction

UO = initial velocity

~ -. ~.---- ~ - - -
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BO = initial heading

WO = initial mass

TO initial time

XF final position in x-direction
YF final position in y-direction
UF final velocity

BF = final heading

WF = final mass

IOUT = print frequency for forward integration
IOUT 2 = print frequency for backward integration

IPRNT 1 = 1 for initial run, = 2 for continuing run after normal termina-

tion of conditional cutoff

IPRNT 2 not used

CBND(2, 2)" = control bound

ERRMX = error tolerance for integration routine

ERRMN = not used

TCUT = upper time limit on trajectory

EPST = cutoff tolerance for norm of control change

EPSTF = not used

EPSA = cutoff tolerance for integration weight cutoff

EPSIT cutoff tolerance on gradient norm

ERR = cutoff tolerance for small cost change

Note: for any final state unspecified an arbitrary number other than zero

may be assigned.

C. Control Vector Date

IJKU = total number of control points

TF = initial guessed tf

U (3, IJKU) = control vector and time point

D. Bounded Thrust Value

NN = number of points with bounded thrust

TAUMAX(N) = maximum thrust limit at Nth point

TAUMIN (N) = minimum thrust limit at Nth point
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SEKALF: (One-dimensional search subroutine): Determines the parameter

for the new control value in the conjugate gradient algorithm. Fits a cubic

in a to known values of J(o,), J/ 8Ua, to obtain min J(a) and then a* for J min.

FWDINT: Subroutine performs the forward integration of the state variables

C, and calls the subroutines to evaluate the cost functional and final multiplier

values.

BAKINT:. Subroutine performs the backward integration of the state variables

and multiplier equations, calls on GRADFN to calculate the gradient and

store the value at each integration step, determines the new search direction.

DERIV 1: Subroutine calcates the time derivatives of the state variables
DERIVZ: Subroutine calculates the time derivatives of the multipliersevil

AERODN. Calculates aerodynamic parameters

XLAMFN: Calculates final multiplier values

COSTFN: Calculates cost functional

GRADFN: Calcvlates gradient values at each step.

IV.4. Representative Problems and Numerical Solutions

Several minimum-time missions have been selected and solved by the
numerical programs. The missile is assumed to have a parabolic drag

polar

C C (M) + k(M)C? 33)

In terms of the angle of attack, the lift coefficient is given by

CL = CL a (M)a (IV. 34)

where CLa is the slope of the lift curve

SCL C L 8a 1=0 (IV.35)

The induced drag coefficient k(M) can be related to the aerocynam-

ic stability derivatives by observing that CD(M, a) can be expanded in Tay-

lor's series as

"( a,+1 "NCD Ca + Z 0 -

DD o 2 i I/ -
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For a parabolic representation, as given by (IV. 33), the coefficient of the

second term on the right hand side of Eq. (IV. 36) is negligible and we have

k=)C 8=C
k(MCLk(M)C2 (M 2

Hence
CD (M)

k(M) = zac(M) (IV. 37)
LIa

where

CDa (M)= K D) (IV.38)

It is customary to write

-C (M) -E (M) CL M) (IV. 39)2DL

where c (M) is the aerodynamic efficiency with typical values bounded by

< IE (M) '1IV. 40)

Hence
k(1M) (IV. 4 1)

C (M)

For a given Mach number, the maximum lift-to-drag ratio is given by

E* 1 1 CLa(M) (IV. 4Z)
?A~kC Do (M)CD0(M)

To verify the analytical solutions obtained in Chapter III, in the first part

of this numerical analysis, Part A, we.shall asslnme that the coefficients

CD 0o, CLa, and k are constant. We shall indicate in Part B the necessary

modification in the subprograms when these aerodynamics derivatives vary

as functions of the Mach number.

I.•- --
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"A. Constant Aerodynamid Derivatives

The following values are used in the numerical computations.

Initial weight, W0 = 861 lbs

Final weight, Wf = 434 lbs

Maximum thrust, TM = 34,000 lbs

Mini-mum thrust, T. 0 lbs

Exhaust velocity, c = 8,050 ft/sec

Reference area, S 0.66 ft2

Air mass density at at 40, 000 ft, p 0.000585 sligs/ft3

Zero lift drag coefficient, CDo 0.3

Lift curve slope, CL = 10.3

Induced drag coefficient, k = 0. 097

Maximum angle of attack,aM = 300

Problem 1: Pure Coasting Flight

Initial Conditions Terminal Conditions

Xo = 0 Xf =free

Y0 = 0 Yf = free

PO = 0 Pf = 450

Vo = 2136.Zft/sec ' 2.2 Mach Vf > 1000 ft/sec

Wo =861 lbs Wf = 861 lbs

This case was considered to test of the efficiency of the program. After 12

iterations we obtain tfi = 10. 904 seconds with the final velocity being

V(tf) = 1525 ft/sec. As predicted by the analytical solution, the flight is

effected at maximum angle-of-attack, and the maximum allowable bank

angle decreases monotonically along the optimal trajecto~ry.

Problem 2: Minimum time turning with high initial velocity

Initial Conditions Terminal Conditions

X 0 = 0 Xf = free

=Yo 0 Yf free

P =o 0 pf = 1350
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Vo = 2136. 2 ft/sec Vf - 1000 ft/sec

WO = 861 lbs - 434 lbs

In this problem, a thrusting phase is involved. Since the constraining final

velocity is low the thrust profile is of the Boost-Coast type. The minimum

time obtained is tf = 9.49 seconds. The trajectory is flown with maximum

angle-of-attack.

Keeping the same final heading, if we increase the final constraining

velocity, there exists a critical final velocity such that the thrust profile

reverses to the Coast-Sustain-Boost type.

Problem 3: Minimum time turning with low initial velocity

Initial Conditions Terminal Conditions

X0 = 0 Xf = free

YO = 0 Yf = free

Ao 0 f -450
V0 = 1000 ft/sec Vf >- 1000 ft/sec

W0 861 lbs Wf = 434 lbs

After 40 iterations, we obtain tfmin 8. 133 seconds with the final velocity

being V(tf) = 5700 ft/sec. The optimal thrust profile is Boost-Coast with

the trajectory flown at maximum angle-of-attack.

Problem 4: Minimum time turning to a specified terminal position

Initial Conditions Terminal Conditions

Xo = 0 Xf= 31680 ft =6 miles

Yo = 0 Yf = 31680 ft 6 miles

.Po = 0 Pf = free

V0 = 2136.2 ft/sec V _- 1000 ft/sec

"No = 861 bs Wf = 434 Ibs

This problem is designed to force the appearance of a sustaining phase

where variable thrust control is used. After 23 iterations we obtain

tfmin = 27.1559 seconds. The trajectory is composed of an initial coasting

arc of 19 seconds, followed by a sustaining arc of 5 seconds with a final

I<



lboosting arc of 3 seconds. The thrust level for the sustaining arc ia very

low and is nearly constant.

Fig. IV. I shows the convergence of the final coordinates 1f and YJ,

while Fig. IV. 2 shows the oonvergence of the final weight Wf.

Fig. IV. 3 shows the optimal thrust profile and Fig. IV. 4 presents the

variation in the optimal bank angle.

Problem 5: Minimum time turning to a specified terminal position

Initial Conditions Terminal Conditions

Xo =0 X4, =0

Y: = 0 Yf = 105600 ft= 20 miles

PO = 0 Pf = free I
VO = 2136.2 ft/sec V1 2f 1000 ft/secfI

Wa = 861 lbs Wf = 434 lbs

This problem is desinged to have a longer flying time, thus making the

variable thrust control more prominent. After 35 iterations we obtain

tfmin = 45.029 seconds. The trajectory is of the type Coast-Sustain-Coast.

Fig. IV. 5 shows the final trajectory, with the initial guessed trajectory.

The figure illustrates the efficiency of the numerical program.

Fig. IV. 6 shows the optimal thrust profile and Fig. IV. 7 presents the

variation of the optimal bank angle.

B. Mach Dependent Aerodynamic Parameters

The program has been assembled to include the case where the aero-

dynamic derivatives CD0 jN%) and k(M) in Eq. (IV. 33) are functions of the Mach

number. The following numerical data are available for the rocket con-

Itdered.
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Drag Coetlickiat CD(a. M'

a (deg )Mach Number
0.0 0.8 1.0 1.05 1.5 2.0 2.2 3.5 6.0

- 0. 25 0.20 0.30 0.45 0.40 0.33 0.30 0.22 0.15

5 0.30 0.26 0.40 0.50 b.45 0.38 0.34 0.27 0.18

10 0.51 0.48 0.70 0.80 0.75 0.61 0.60 0.48 0.41

15 1.06 1.07 1.30 1 41 1.35 1.18 1.14 1.00 0.92
20 2.10 2.22 2.60 2.67 2, 60 2.20 2.1I0 1.90 1.67

25 3.61 4.25 4.60 4.68 4.30 3.48 3.30 3.05 2.84

30 - 4.90 5.00 - 5.60 - 4.60 - -

Lift Coefficient CL(a, M)

a (deg.) Mach Number
I 0,0 0.8 1.0 1.5 2.2 2.5 3.5 6.0

.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.67 0.62 0.70 0.77 0.80 0.81 0.78 0.67

10 1.60 1.54 1.80 1.85 1.90 1.91 1.94 1.86

15 2.85 2.61 2.90 3.18 3.50 3.58 3.55 3.05

20 4.12 3.65 4.00 4.93 5.20 5.58 5.27 3.81

25 4.85 4.00 6.00 7.50 7.80 7.93 6.90 4.70

30 - 6.80 7.00 8.00 8.00 - - -

Least squares is used to obtain the values of Co(M) and k(M)

at each point. Then polynomial regression curve fitting is applied

to derive the expressions for the functions CDo (M), k(M) a d their deriva-

fives 8CD 0/8M, Ok/aM.

By the end of each boosting phase, the velocity is usually in the hyper-

sonic range. Since theoretically CD0 and k tend asymptotically to cons~ant

values when M -* oo these functions are set constant for M . 6.0.
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V. QUALITATIVE ANALYSIS AND CONCLUSIONS

One of the objectives of this study is to determine the conditions under

which a variable thrust magnitude program is optimal, and in that case, its

relationship with missile parameters and trejectory. In the general case,

such a relationship was displayed by Eq. (II. 32) for the rocket motor with

constant exhaust velocity. For horizontal, rectilinear flight, the variable

thrust magnitude was given explicitly in terms of the flight velocity in Eq.

(111. 70), and for the case of turning flight with free terminal positions, it was

obtained through the Eq. (III. 85) for flight at maximum lift and the Eq.

(III. 109) for flight using variable lift coefficient. In all these cases, the

thrust magnitude is always decreasing along the sustaining flight path and

furthermore, it remains at low level for low Mach number. These conclu-

sions have been substantiated bý an independent numerical study carried out

in Chapter IV.

If an ideal rocket motor where the thrust magnitude level is fully con-

trollable (motor represented by the system (SI) in Chapter II) is available,

then the trajectory can be flown optimally. In practice, the rocket motor is

preprogrammed and in this chapter we shall compare the performances of

some preprogrammed motors with an ideal motor.

We can classify rocket motors used in Air Force missions, in order

of increasing thrust controllability, as follows (Fig. V. 1).

1. Preprogrammed motors. The thrust profile is fixed at the time

of manufacture.

2. Preprogrammed pulse motors. The thrust profile is fixed at the

time of manufacture; however, the off time between pulses may be con-

trolled.

3. Stop-restart motors. This system permits motor shutdown and

restart at any time on command. The thrust level is either rated thrust or

zero.

4. Step-thrust motors. This system has the capability of providing

thrust at more than two discrete levels. The on-off times and the order of

64
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thrust levels are variable on command.

5. Continuously variable motor. This system, idealized by our
model (S) offers the capability to provide anythrust time profile within

specific limits of thrust and rate change of thrust.

As has been displayed explicitly by the equation (11. 32), whenever

variable thrust profile is optimal, it var-. "s function of the state variables
"r , V and m and the adjoint components pr and pv" The adjoint p is in-

volved only in the switching function K (Eq. II. 21) indicating the timing for

stop and restart. it is known that the adjoint r and - depend on the termi-

v nal conditions. Hence for each specified mission we have a resulting opti-

mal trajectory and a specified thrust profile.

The numerical examples given in Chapter IV clearly show that, unlike
the simple case of horizontal rectilinear flight, the number of variables
involved in the optimization problem for minimum time turning flight requires

an important program for trajectory analysis in order to do an adequate

I comparative qualitative analysis among the different types of motors. Al-

though this task is laborious, we believe that with our analyt:.cal results

and numerical programs, the analysis can be easily carried out if sufficient

computational time is allowed.

In this concluding chapter we shall give this comparative analysis for

two specified problems given in Chapter IV, namely problem 2 and 4.

We have seen in problem 4 that, by constraining the final position

(intercept problem), to meet the end- conditions, the trajectory usually in-

cludes a sustaining arc, where variable thrust is used. In general the vari-

able thrust level is low compared to the maximum thrust. Hence, in the

rockets used for the comparison we shall consider constant thrust at differ-

ent intermediate levels with variable on-off time. The results of the com-

parative analysis are given in the tables below.

I
I
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Case 1:

X0 0 , Yo 0 , P0 = 0 V0 = 2136. Zft/sec, Wo =861 lbs

X =free, Yf = free, Pf= 1350, Vf _ 1000ft/sec ,Wf 434 lbs

Opti.nal Thrust Profile Boost-Coast

Minimum time 9.49 seconds

Comparison with Pre-programmed Motors

Motor Thrust Profile (T in lbs) Time (see)

Boost- Coast

T =34,000 0= It 3.14 9.49 (minimum)

T =0 t> 3.14

Sustain-Coast

T =12,500 0 t=: 9 11.2

T=0 t>9

Sustain-Coast

T =6,640 0= <t5 6.25 12.04

3 T 20,000 6.25<t_59. 25

T =0 t> 9.25

Sustain-Boost-Coast
T 7,900 0 =5t := 8.25

12.17
4 T =34,000 3.25< •-_925 12.1

T =0 t> 9.25

.wstain- Boost- Coast

T 3,2 30 05t= <5 7.25
13.37

5 T 34,000 7.25<t-1 9. 25

T 0 t> 9.25

The comparison in this case shows the influence of the timing and the

order in the sequence of arcs.
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Case 2:

X) = 0 ' 0 •= 0 P O 0 V =2136.2ft/sec, W0 = 861 lbs
Xf = 31680 ft, Yf = 31680 ft, Pf free, Vf- 000 ft/sec , Wf = 434 1bs

Optimal Thrust Profile = Coast-Sustain-Boost

Minimum Time = 27.16 seconds

Comparison with Pre- programmed Motors

Motor Thrust Profile (T in lbs) Time (sec)

Coast-Sustain- Boost127. 16 (minimum)
(Fig. IV. 3)

Coast-Boost

2 T T=0 05t524 27.20
T = 34,000 t > 24

Coast-Sustain- Boost

T=0 0:t 523
3

T 4,250 23<t= <25 28.157
T =34,000 25<t= I28

The ctimparison in this case shows that the variable thrust can be

adequately approximated by either a null thrust or a constant low level thrust.

The problem of minimum time turning in horizontal flight has been chosen

for our numerical analysis but the computer program can be adapted for

other types of performance indices such as maximum coverage (reachable

sets). Furthermore, it can be used to solve optimization problems for

flight in three-dimensional space.

Also the analytical results presented in this report have been extended

to the case of optimal aerodynamic and thrusting maneuvers for three di-

mensional flight in a general gravitational force field (Refs. 9-11).

" lI
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